Environmental Decision Support Systems: A Human Factors Perspective

Prof. Dr. Steven P. Frysinger

James Madison University Harrisonburg, Virginia USA

and

cismet GmbH

EDSS

- Decision Support Systems attempt to facilitate a "natural intelligence" approach to human problem solving
- EDSS specifically focuses on environmental problems a very large problem space

EDSS Technology Integration

- Environmental Decision Support Systems typically integrate a wide range of technologies
 - Geographic Information Systems
 - Mathematical Process Models
 - Monte Carlo Simulation
 - Expert Systems
 - Linear Programming Optimization

— ...

EDSS

- Environmental decision makers WILL make decisions with or without the benefit of science
- EDSS is intended to bring science to these decision makers
- But historically, EDSS has had limited success in spite of considerable effort in the last 25 years
 - Decision makers still frequently work "in the dark"Why?

The Problem

- EDSS is fundamentally about people...
 - ...and how they make decisions
- Yet in EDSS development human factors are usually only considered in *ad hoc* ways
- We need to explicitly address the application of human factors engineering to the design and development of environmental decision support systems

The Nature of Environmental Decisions

- Environmental decisions are particularly complex in nature:
 - Spatial
 - Temporal
 - Uncertain
 - Risk-oriented
- These characteristics make them especially difficult for humans to approach

Environmental Decision Makers

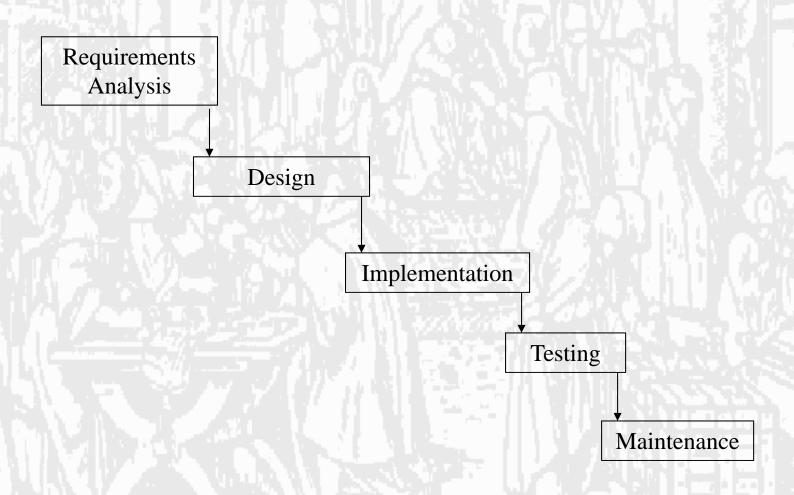
- Environmental decisions are made by an enormous variety of individuals
 - Scientists and engineers
 - Business people
 - Community leaders
 - Voters (perhaps the most important decision makers)
- The degree of technical training varies widely
- To support these people, the EDSS must acknowledge and accommodate this variety

Human Factors Methods

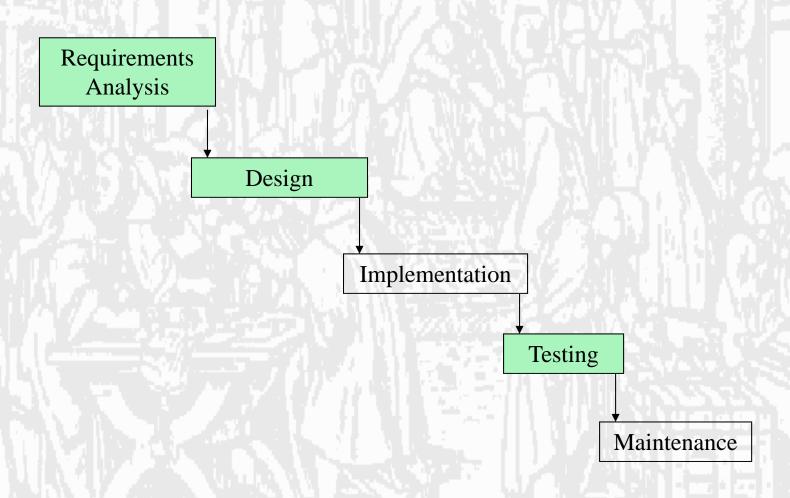
- Traditionally, attention is primarily paid to Interface Design
 - GUI, buttons, colors, &c
- We need to focus on "Interaction Design"
 - Consider the total relationship to the human
 - Needs, goals, and objectives
 - Conceptual Model
- Rigorous evaluation of the interaction design is at least as important as testing of software

Interaction Design

- Identify the Stakeholders
 - Customers, "innocent bystanders", users
- Identify the Users
 - Primary: Frequent hands-on users of the system
 - Secondary: Occasional users, or who use the system through an intermediary
 - Tertiary: Those who are affected by the system without having direct or indirect interaction with it
- Engage in user-centered software engineering
 - The humans are part of the system!


The Interaction Design Process

- Five Basic Activities:
 - Identifying needs and establishing requirements
 - Exploring alternative designs meeting requirements
 - Building interactive prototypes for assessment
 - Continuous evaluation throughout development
 - Quantitative and qualitative testing before delivery


• Notes:

- Users should be involved throughout the process
- Specific usability goals should be agreed at the outset
- Iteration is inevitable

HCI and the Software Lifecycle

HCI and the Software Lifecycle

Requirements Analysis

- Needs Assessment
 - People have difficulty knowing what they need until they know what is possible
 - It is natural for designers to design "for themselves", based on what they would like – this is a frequent cause of system failure
- Task Analysis
 - A structured mechanism for breaking down the current or projected work of the user

System Design and the Interactive User Interface

- Interface design can occur in the software design phase, but is better accomplished in the requirements phase
- Prototyping is a critical element in the design process
 - Low fidelity vs. high fidelity
- "Conceptual Design" transforms the user requirements into a conceptual model:
 - a description of the proposed system in terms of a set of integrated ideas and concepts about what it should do and how it should appear.

Functional Testing and Human Performance Experiments

- Software engineers wouldn't release software without testing, but the human interaction design is rarely tested
 - Lack of training/know-how is the impediment
- Techniques from experimental psychology allow both qualitative and quantitative evaluation to be carried out throughout the lifecycle

Implications of Human Factors Engineering for EDSS

- The concept of a "generic" EDSS is fundamentally flawed:
 - Too many different types of users
 - Too many different types of decisions
- "One size fits all" in this case really means it doesn't fit anyone very well:

Generic systems are too complex

• An open and adjustable architecture is a possible compromise

Unsolicited Advice

- Identify <u>ALL</u> stakeholders and users
- Engage users in the interaction design process
- Integrate human factors into the total lifecycle
- Task analysis and evaluation are at least as important as GUI design
- Evaluation is more than asking the user if they like the system <u>design</u> the experiments

